Master statistics with formulas from basic measures to advanced inference.
Advertisement
(Google AdSense will appear here)
Mean (Average):
\( \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \)
Median:
Middle value of ordered data
Mode:
Most frequent value
Variance (Sample):
\( s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \)
Standard Deviation (Sample):
\( s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \)
Population Variance:
\( \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \)
Population Standard Deviation:
\( \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \)
Interquartile Range (IQR):
\( IQR = Q_3 - Q_1 \)
Probability of an Event:
\( P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total outcomes}} \)
Complement Rule:
\( P(A') = 1 - P(A) \)
Addition Rule (Mutually Exclusive):
\( P(A \cup B) = P(A) + P(B) \)
Addition Rule (General):
\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
Multiplication Rule (Independent):
\( P(A \cap B) = P(A) \cdot P(B) \)
Conditional Probability:
\( P(A|B) = \frac{P(A \cap B)}{P(B)} \), if \( P(B) > 0 \)
Binomial Probability:
\( P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \)
Binomial Mean:
\( E(X) = np \)
Binomial Variance:
\( Var(X) = np(1-p) \)
Poisson Probability:
\( P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \)
Poisson Mean and Variance:
\( E(X) = \lambda, \, Var(X) = \lambda \)
Uniform Distribution PDF:
\( f(x) = \frac{1}{b-a} \), for \( a \leq x \leq b \)
Uniform Mean:
\( E(X) = \frac{a + b}{2} \)
Uniform Variance:
\( Var(X) = \frac{(b-a)^2}{12} \)
Normal Distribution PDF:
\( f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \)
Normal Mean and Variance:
\( E(X) = \mu, \, Var(X) = \sigma^2 \)
Exponential PDF:
\( f(x) = \lambda e^{-\lambda x} \), \( x \geq 0 \)
Exponential Mean and Variance:
\( E(X) = \frac{1}{\lambda}, \, Var(X) = \frac{1}{\lambda^2} \)
Sample Mean Distribution:
\( \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \), for large \( n \)
Standard Error of the Mean:
\( SE = \frac{\sigma}{\sqrt{n}} \)
Z-Score for Sample Mean:
\( Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \)
Confidence Interval for Mean (Known Variance):
\( \bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \)
Confidence Interval for Mean (Unknown Variance):
\( \bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \)
Confidence Interval for Proportion:
\( \hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \)
Z-Test Statistic (Mean):
\( Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \)
t-Test Statistic (Mean):
\( t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \)
Z-Test Statistic (Proportion):
\( Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \)
P-Value (General):
Probability of observing test statistic as extreme as calculated
Simple Linear Regression:
\( y = \beta_0 + \beta_1 x + \epsilon \)
Slope (\( \beta_1 \)):
\( \beta_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \)
Intercept (\( \beta_0 \)):
\( \beta_0 = \bar{y} - \beta_1 \bar{x} \)
Coefficient of Determination (\( R^2 \)):
\( R^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \)
Total Sum of Squares (SST):
\( SST = \sum (y_i - \bar{y})^2 \)
Between-Group Sum of Squares (SSB):
\( SSB = \sum n_k (\bar{y}_k - \bar{y})^2 \)
Within-Group Sum of Squares (SSW):
\( SSW = \sum \sum (y_{ik} - \bar{y}_k)^2 \)
F-Statistic:
\( F = \frac{MSB}{MSW} = \frac{SSB / (k-1)}{SSW / (N-k)} \)
Bayesβ Theorem:
\( P(A|B) = \frac{P(B|A) P(A)}{P(B)} \)
Posterior Distribution:
\( P(\theta|D) = \frac{P(D|\theta) P(\theta)}{\int P(D|\theta) P(\theta) \, d\theta} \)
Expected Value (Continuous):
\( E(\theta) = \int \theta P(\theta|D) \, d\theta \)
Advertisement
(Google AdSense will appear here)