Master physics with formulas from mechanics to quantum mechanics and beyond.
Advertisement
(Google AdSense will appear here)
Velocity:
\( v = \frac{\Delta x}{\Delta t} \)
Acceleration:
\( a = \frac{\Delta v}{\Delta t} \)
Position (Constant Acceleration):
\( x = x_0 + v_0 t + \frac{1}{2} a t^2 \)
Velocity (Constant Acceleration):
\( v = v_0 + a t \)
Velocity Squared Equation:
\( v^2 = v_0^2 + 2 a (x - x_0) \)
Newtonβs Second Law:
\( F = m a \)
Momentum:
\( p = m v \)
Impulse:
\( J = F \Delta t = \Delta p \)
Force of Friction:
\( F_f = \mu N \)
Weight:
\( W = m g \)
Work:
\( W = F d \cos \theta \)
Kinetic Energy:
\( KE = \frac{1}{2} m v^2 \)
Potential Energy (Gravitational):
\( PE = m g h \)
Work-Energy Theorem:
\( W = \Delta KE \)
Conservation of Mechanical Energy:
\( KE_i + PE_i = KE_f + PE_f \)
Power:
\( P = \frac{W}{t} = F v \cos \theta \)
Angular Velocity:
\( \omega = \frac{\Delta \theta}{\Delta t} \)
Angular Acceleration:
\( \alpha = \frac{\Delta \omega}{\Delta t} \)
Rotational Kinematics:
\( \theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \)
Torque:
\( \tau = r F \sin \theta \)
Moment of Inertia (Point Mass):
\( I = m r^2 \)
Angular Momentum:
\( L = I \omega \)
Rotational Kinetic Energy:
\( KE_{rot} = \frac{1}{2} I \omega^2 \)
Gravitational Force:
\( F = G \frac{m_1 m_2}{r^2} \)
Gravitational Potential Energy:
\( U = -G \frac{m_1 m_2}{r} \)
Orbital Velocity:
\( v = \sqrt{\frac{G M}{r}} \)
Escape Velocity:
\( v_e = \sqrt{\frac{2 G M}{r}} \)
Ideal Gas Law:
\( PV = nRT \)
Kinetic Theory of Gases (Average KE):
\( KE_{avg} = \frac{3}{2} k T \)
First Law of Thermodynamics:
\( \Delta U = Q - W \)
Heat Transfer (Conduction):
\( Q = k A \frac{\Delta T}{L} t \)
Efficiency of Heat Engine:
\( \eta = 1 - \frac{T_C}{T_H} \)
Wave Speed:
\( v = f \lambda \)
Frequency of Oscillation:
\( f = \frac{1}{T} \)
Simple Harmonic Motion (Position):
\( x = A \cos(\omega t + \phi) \)
Angular Frequency (Spring):
\( \omega = \sqrt{\frac{k}{m}} \)
Angular Frequency (Pendulum):
\( \omega = \sqrt{\frac{g}{L}} \)
Wave Intensity:
\( I = \frac{P}{4\pi r^2} \)
Coulombβs Law:
\( F = k_e \frac{q_1 q_2}{r^2} \)
Electric Field:
\( E = \frac{F}{q} = k_e \frac{q}{r^2} \)
Electric Potential:
\( V = k_e \frac{q}{r} \)
Capacitance:
\( C = \frac{Q}{V} \)
Ohmβs Law:
\( V = I R \)
Magnetic Force on a Moving Charge:
\( F = q v B \sin \theta \)
Magnetic Field (Current-Carrying Wire):
\( B = \frac{\mu_0 I}{2 \pi r} \)
Faradayβs Law of Induction:
\( \mathcal{E} = - \frac{d\Phi_B}{dt} \)
Lens Formula:
\( \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \)
Magnification:
\( M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} \)
Snellβs Law:
\( n_1 \sin \theta_1 = n_2 \sin \theta_2 \)
Critical Angle:
\( \theta_c = \sin^{-1} \left( \frac{n_2}{n_1} \right) \)
Diffraction (Single Slit):
\( \sin \theta = \frac{\lambda}{a} \)
de Broglie Wavelength:
\( \lambda = \frac{h}{p} \)
Energy of a Photon:
\( E = h f = \frac{h c}{\lambda} \)
Uncertainty Principle:
\( \Delta x \Delta p \geq \frac{\hbar}{2} \)
SchrΓΆdinger Equation (Time-Independent):
\( -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V \psi = E \psi \)
Energy Levels (Particle in a Box):
\( E_n = \frac{n^2 h^2}{8 m L^2} \)
Time Dilation:
\( t = \frac{t_0}{\sqrt{1 - \frac{v^2}{c^2}}} \)
Length Contraction:
\( L = L_0 \sqrt{1 - \frac{v^2}{c^2}} \)
Relativistic Momentum:
\( p = \gamma m v \), where \( \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \)
Mass-Energy Equivalence:
\( E = m c^2 \)
Relativistic Energy:
\( E = \gamma m c^2 \)
Advertisement
(Google AdSense will appear here)