Master number theory with these formulas for integers, primes, and advanced concepts.
Advertisement
(Google AdSense will appear here)
Sum of First \( n \) Naturals:
\( S = \frac{n(n+1)}{2} \)
Sum of Squares:
\( S = \frac{n(n+1)(2n+1)}{6} \)
Sum of Cubes:
\( S = \left( \frac{n(n+1)}{2} \right)^2 \)
Even Number:
\( n = 2k \)
Odd Number:
\( n = 2k + 1 \)
Factorial:
\( n! = n \cdot (n-1) \cdot \ldots \cdot 1 \)
Binomial Coefficient:
\( \binom{n}{k} = \frac{n!}{k!(n-k)!} \)
Pascal’s Identity:
\( \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)
Sum of Binomial Coefficients:
\( \sum_{k=0}^{n} \binom{n}{k} = 2^n \)
Alternating Binomial Sum:
\( \sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0 \)
Divisibility by 2:
Last digit is 0, 2, 4, 6, 8
Divisibility by 3:
Sum of digits is divisible by 3
Divisibility by 4:
Last two digits form a number divisible by 4
Divisibility by 5:
Last digit is 0 or 5
Divisibility by 6:
Number is divisible by both 2 and 3
Divisibility by 9:
Sum of digits is divisible by 9
Divisibility by 11:
Alternating sum of digits is divisible by 11
Remainder Definition:
\( a = bq + r \), where \( 0 \leq r < b \)
Division Algorithm:
For \( a, b \in \mathbb{Z}, b > 0 \), \( \exists q, r \) such that \( a = bq + r \)
Divisor Property:
If \( a | b \) and \( b | c \), then \( a | c \)
Prime Definition:
\( p > 1 \) with only divisors 1 and \( p \)
Composite Definition:
\( n > 1 \) and \( n = ab \), where \( 1 < a, b < n \)
Fundamental Theorem of Arithmetic:
\( n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k} \) (unique factorization)
Number of Divisors:
\( d(n) = (e_1 + 1)(e_2 + 1) \cdots (e_k + 1) \)
Sum of Divisors:
\( \sigma(n) = (1 + p_1 + \cdots + p_1^{e_1})(1 + p_2 + \cdots + p_2^{e_2}) \cdots \)
Euclid’s Theorem:
There are infinitely many primes
Sieve of Eratosthenes:
Mark multiples of each prime up to \( \sqrt{n} \)
Prime Number Theorem (Approximation):
\( \pi(x) \approx \frac{x}{\ln x} \)
Twin Prime Conjecture:
Infinite pairs \( (p, p+2) \) both prime (unproven)
Goldbach Conjecture:
Every even \( n > 2 \) is sum of two primes (unproven)
GCD Definition:
\( \gcd(a, b) = \max \{ d : d | a \text{ and } d | b \} \)
LCM Definition:
\( lcm(a, b) = \min \{ m : a | m \text{ and } b | m \} \)
GCD-LCM Relationship:
\( \gcd(a, b) \cdot lcm(a, b) = a \cdot b \)
Euclidean Algorithm:
\( \gcd(a, b) = \gcd(b, a \mod b) \)
Bézout’s Identity:
\( \gcd(a, b) = ax + by \) for some integers \( x, y \)
Coprime Property:
\( \gcd(a, b) = 1 \) if no common factors other than 1
GCD of Multiple Numbers:
\( \gcd(a, b, c) = \gcd(\gcd(a, b), c) \)
LCM of Multiple Numbers:
\( lcm(a, b, c) = lcm(lcm(a, b), c) \)
GCD with Prime Factorization:
\( \gcd(a, b) = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots \)
LCM with Prime Factorization:
\( lcm(a, b) = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \cdots \)
Congruence:
\( a \equiv b \pmod{m} \) if \( m | (a - b) \)
Modular Addition:
\( (a + b) \mod m = [(a \mod m) + (b \mod m)] \mod m \)
Modular Multiplication:
\( (a \cdot b) \mod m = [(a \mod m) \cdot (b \mod m)] \mod m \)
Modular Exponentiation:
\( a^n \mod m \) (computed via repeated squaring)
Fermat’s Little Theorem:
\( a^{p-1} \equiv 1 \pmod{p} \) if \( p \) is prime, \( p \nmid a \)
Euler’s Theorem:
\( a^{\phi(m)} \equiv 1 \pmod{m} \) if \( \gcd(a, m) = 1 \)
Chinese Remainder Theorem:
Unique \( x \pmod{m_1 m_2} \) for \( x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2} \) if \( \gcd(m_1, m_2) = 1 \)
Inverse Modulo \( m \):
\( a \cdot a^{-1} \equiv 1 \pmod{m} \) if \( \gcd(a, m) = 1 \)
Wilson’s Theorem:
\( (p-1)! \equiv -1 \pmod{p} \) if \( p \) is prime
Carmichael Function:
\( \lambda(m) = lcm(\phi(p_1^{e_1}), \phi(p_2^{e_2}), \ldots) \)
Linear Diophantine Equation:
\( ax + by = c \) solvable if \( \gcd(a, b) | c \)
General Solution (Linear):
\( x = x_0 + \frac{b}{\gcd(a, b)} k, \, y = y_0 - \frac{a}{\gcd(a, b)} k \)
Pell’s Equation:
\( x^2 - d y^2 = 1 \) (solve for fundamental solution)
Fermat’s Last Theorem:
\( a^n + b^n = c^n \) has no solutions for \( n > 2 \) (proven)
Pythagorean Triple:
\( a^2 + b^2 = c^2 \), e.g., \( a = m^2 - n^2, b = 2mn, c = m^2 + n^2 \)
Sum of Two Squares:
\( n = a^2 + b^2 \) if prime factors \( p \equiv 3 \pmod{4} \) have even exponents
Sum of Four Squares:
Every \( n \geq 0 \) is \( a^2 + b^2 + c^2 + d^2 \) (Lagrange’s Theorem)
Congruent Number Equation:
\( y^2 = x^3 - n^2 x \) for rational points
Partition Function:
\( p(n) \) = number of ways to write \( n \) as sum of positive integers
Euler’s Pentagonal Number Theorem:
\( p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots \)
Euler’s Totient Function:
\( \phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right) \)
Multiplicative Property of \( \phi \):
\( \phi(mn) = \phi(m) \phi(n) \) if \( \gcd(m, n) = 1 \)
Sum of Totients:
\( \sum_{d|n} \phi(d) = n \)
Möbius Function:
\( \mu(n) = \begin{cases} 1 & \text{if } n \text{ is square-free, even # of primes} \\ -1 & \text{if square-free, odd # of primes} \\ 0 & \text{if not square-free} \end{cases} \)
Möbius Inversion Formula:
\( f(n) = \sum_{d|n} g(d) \implies g(n) = \sum_{d|n} \mu(d) f\left(\frac{n}{d}\right) \)
Divisor Function \( \sigma_k(n) \):
\( \sigma_k(n) = \sum_{d|n} d^k \)
Perfect Number:
\( \sigma(n) = 2n \) (e.g., 6, 28)
Abundant Number:
\( \sigma(n) > 2n \)
Deficient Number:
\( \sigma(n) < 2n \)
Liouville Function:
\( \lambda(n) = (-1)^{\Omega(n)} \), where \( \Omega(n) \) is total # of prime factors
Fibonacci Sequence:
\( F_n = F_{n-1} + F_{n-2} \), \( F_0 = 0, F_1 = 1 \)
Binet’s Formula:
\( F_n = \frac{\phi^n - (-\phi)^{-n}}{\sqrt{5}} \), where \( \phi = \frac{1 + \sqrt{5}}{2} \)
Lucas Numbers:
\( L_n = F_{n-1} + F_{n+1} \)
Arithmetic Sequence:
\( a_n = a_1 + (n-1)d \)
Sum of Arithmetic Sequence:
\( S_n = \frac{n}{2} (a_1 + a_n) \)
Geometric Sequence:
\( a_n = a_1 r^{n-1} \)
Sum of Geometric Sequence:
\( S_n = a_1 \frac{1 - r^n}{1 - r} \), \( r \neq 1 \)
Infinite Geometric Sum:
\( S = \frac{a_1}{1 - r} \), \( |r| < 1 \)
Harmonic Number:
\( H_n = \sum_{k=1}^{n} \frac{1}{k} \)
Triangular Number:
\( T_n = \frac{n(n+1)}{2} \)
Riemann Zeta Function:
\( \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1} \)
Euler Product Formula:
\( \zeta(s) = \prod_{p \text{ prime}} \left(1 - p^{-s}\right)^{-1} \)
Special Value \( \zeta(2) \):
\( \zeta(2) = \frac{\pi^2}{6} \)
Special Value \( \zeta(4) \):
\( \zeta(4) = \frac{\pi^4}{90} \)
Dirichlet Beta Function:
\( \beta(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^s} \)
Prime Counting Function:
\( \pi(x) = \sum_{p \leq x} 1 \)
Logarithmic Integral (Prime Approximation):
\( \pi(x) \approx \text{li}(x) = \int_2^x \frac{dt}{\ln t} \)
Mangoldt Function:
\( \Lambda(n) = \begin{cases} \ln p & \text{if } n = p^k \\ 0 & \text{otherwise} \end{cases} \)
Chebyshev Function:
\( \psi(x) = \sum_{n \leq x} \Lambda(n) \approx x \)
Riemann Hypothesis (Critical Line):
Non-trivial zeros of \( \zeta(s) \) at \( \text{Re}(s) = \frac{1}{2} \) (unproven)
Advertisement
(Google AdSense will appear here)