Master geometry with formulas for shapes, theorems, and more.
Advertisement
(Google AdSense will appear here)
Perimeter of a square:
\( P = 4s \)
Area of a square:
\( A = s^2 \)
Perimeter of a rectangle:
\( P = 2(l + w) \)
Area of a rectangle:
\( A = l \times w \)
Perimeter of a parallelogram:
\( P = 2(a + b) \)
Area of a parallelogram:
\( A = b \times h \)
Perimeter of a rhombus:
\( P = 4a \)
Area of a rhombus:
\( A = \frac{1}{2} \times d_1 \times d_2 \)
Perimeter of a trapezoid:
\( P = a + b + c + d \)
Area of a trapezoid:
\( A = \frac{1}{2} (a + b) h \)
Perimeter of a regular polygon:
\( P = n \times s \)
Area of a regular polygon:
\( A = \frac{1}{2} \times P \times a \)
Perimeter of a circle (Circumference):
\( C = 2\pi r \)
Area of a circle:
\( A = \pi r^2 \)
Arc length:
\( L = r \theta \)
Area:
\( A = \frac{1}{2} \times b \times h \)
Pythagorean Theorem:
\( a^2 + b^2 = c^2 \)
Sum of interior angles:
\( 180^\circ \)
Heron's Formula:
\( A = \sqrt{s(s-a)(s-b)(s-c)} \), where \( s = \frac{a+b+c}{2} \)
Law of Sines:
\( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)
Law of Cosines:
\( c^2 = a^2 + b^2 - 2ab \cos C \)
Area using SAS:
\( A = \frac{1}{2} ab \sin C \)
Median length:
\( m_a = \frac{1}{2} \sqrt{2b^2 + 2c^2 - a^2} \)
Altitude length:
\( h_a = \frac{2A}{a} \)
Inradius:
\( r = \frac{A}{s} \)
Circumradius:
\( R = \frac{abc}{4A} \)
Centroid coordinates:
\( \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \)
Orthocenter:
Intersection of altitudes
Circumcenter:
Intersection of perpendicular bisectors
Incenter:
Intersection of angle bisectors
Exradius:
\( r_a = \frac{A}{s-a} \)
Right Triangle Area:
\( A = \frac{1}{2} ab \)
Equilateral Triangle Area:
\( A = \frac{\sqrt{3}}{4} s^2 \)
Isosceles Triangle Area:
\( A = \frac{1}{2} b \sqrt{a^2 - \frac{b^2}{4}} \)
Triangle Inequality:
\( a + b > c \)
Parallelogram Area:
\( A = b \times h \)
Rhombus Area:
\( A = \frac{1}{2} \times d_1 \times d_2 \)
Trapezoid Area:
\( A = \frac{1}{2} (a + b) h \)
Rectangle Area:
\( A = l \times w \)
Square Area:
\( A = s^2 \)
Kite Area:
\( A = \frac{1}{2} \times d_1 \times d_2 \)
Cyclic Quadrilateral Area:
\( A = \sqrt{(s-a)(s-b)(s-c)(s-d)} \), where \( s = \frac{a+b+c+d}{2} \)
Parallelogram Perimeter:
\( P = 2(a + b) \)
Rhombus Perimeter:
\( P = 4a \)
Trapezoid Perimeter:
\( P = a + b + c + d \)
Rectangle Perimeter:
\( P = 2(l + w) \)
Square Perimeter:
\( P = 4s \)
Kite Perimeter:
\( P = 2(a + b) \)
Diagonal of Rectangle:
\( d = \sqrt{l^2 + w^2} \)
Diagonal of Square:
\( d = s\sqrt{2} \)
Circumference:
\( C = 2\pi r \)
Area:
\( A = \pi r^2 \)
Arc length:
\( L = r \theta \)
Sector Area:
\( A = \frac{1}{2} r^2 \theta \)
Chord length:
\( L = 2r \sin\left(\frac{\theta}{2}\right) \)
Segment Area:
\( A = \frac{1}{2} r^2 (\theta - \sin \theta) \)
Tangent length:
\( L = \sqrt{d^2 - r^2} \)
Equation of Circle:
\( (x-h)^2 + (y-k)^2 = r^2 \)
Central Angle:
\( \theta = \frac{L}{r} \)
Inscribed Angle:
\( \theta = \frac{1}{2} \times \text{Arc} \)
Power of a Point:
\( PA \times PB = PC \times PD \)
Intersecting Chords:
\( (AE)(EB) = (CE)(ED) \)
Intersecting Secants:
\( (PA)(PB) = (PC)(PD) \)
Tangent-Secant:
\( (PA)^2 = (PB)(PC) \)
Circle Area in Terms of Diameter:
\( A = \frac{\pi d^2}{4} \)
Advertisement
(Google AdSense will appear here)