Master financial mathematics with these formulas for interest, investments, and more.
Advertisement
(Google AdSense will appear here)
Simple Interest:
\( I = P \cdot r \cdot t \)
Future Value (Simple Interest):
\( A = P (1 + r t) \)
Present Value (Simple Interest):
\( P = \frac{A}{1 + r t} \)
Interest Rate (Simple):
\( r = \frac{I}{P \cdot t} \)
Time (Simple Interest):
\( t = \frac{I}{P \cdot r} \)
Principal (Simple Interest):
\( P = \frac{I}{r \cdot t} \)
Annual Interest Earned:
\( I_{\text{annual}} = P \cdot r \)
Total Amount with Multiple Periods:
\( A = P + P r t \)
Compound Interest Formula:
\( A = P \left(1 + \frac{r}{n}\right)^{n t} \)
Compound Interest Earned:
\( I = P \left(1 + \frac{r}{n}\right)^{n t} - P \)
Present Value (Compound):
\( P = \frac{A}{\left(1 + \frac{r}{n}\right)^{n t}} \)
Effective Annual Rate (EAR):
\( EAR = \left(1 + \frac{r}{n}\right)^n - 1 \)
Continuous Compound Interest:
\( A = P e^{r t} \)
Continuous Interest Earned:
\( I = P e^{r t} - P \)
Present Value (Continuous):
\( P = A e^{-r t} \)
Time to Double (Rule of 72):
\( t \approx \frac{72}{r} \) (where \( r \) is in percentage)
Time to Double (Exact):
\( t = \frac{\ln 2}{r} \) (continuous), \( t = \frac{\ln 2}{n \ln \left(1 + \frac{r}{n}\right)} \) (compound)
Growth Rate:
\( r = n \left[ \left( \frac{A}{P} \right)^{\frac{1}{n t}} - 1 \right] \)
Future Value of Ordinary Annuity:
\( FV = PMT \cdot \frac{\left(1 + r\right)^n - 1}{r} \)
Present Value of Ordinary Annuity:
\( PV = PMT \cdot \frac{1 - \left(1 + r\right)^{-n}}{r} \)
Future Value of Annuity Due:
\( FV = PMT \cdot \frac{\left(1 + r\right)^n - 1}{r} \cdot (1 + r) \)
Present Value of Annuity Due:
\( PV = PMT \cdot \frac{1 - \left(1 + r\right)^{-n}}{r} \cdot (1 + r) \)
Payment (Ordinary Annuity FV):
\( PMT = \frac{FV \cdot r}{\left(1 + r\right)^n - 1} \)
Payment (Ordinary Annuity PV):
\( PMT = \frac{PV \cdot r}{1 - \left(1 + r\right)^{-n}} \)
Perpetuity Present Value:
\( PV = \frac{PMT}{r} \)
Growing Perpetuity PV:
\( PV = \frac{PMT}{r - g} \), where \( r > g \)
Growing Annuity FV:
\( FV = PMT \cdot \frac{\left(1 + r\right)^n - (1 + g)^n}{r - g} \), \( r \neq g \)
Growing Annuity PV:
\( PV = PMT \cdot \frac{1 - \left(\frac{1 + g}{1 + r}\right)^n}{r - g} \), \( r \neq g \)
Loan Payment (Fixed):
\( PMT = \frac{P \cdot r (1 + r)^n}{(1 + r)^n - 1} \) (where \( r \) is periodic rate)
Loan Balance After \( k \) Payments:
\( B_k = P (1 + r)^k - PMT \frac{(1 + r)^k - 1}{r} \)
Total Interest Paid:
\( I = n \cdot PMT - P \)
Remaining Principal:
\( P_{\text{rem}} = \frac{PMT}{r} \left[ 1 - \left(1 + r\right)^{-(n-k)} \right] \)
Interest Portion of Payment:
\( I_k = B_{k-1} \cdot r \)
Principal Portion of Payment:
\( P_k = PMT - I_k \)
Loan Amount from Payment:
\( P = PMT \cdot \frac{(1 + r)^n - 1}{r (1 + r)^n} \)
Number of Payments:
\( n = \frac{\ln \left( \frac{PMT}{PMT - P \cdot r} \right)}{\ln (1 + r)} \)
Mortgage Interest Rate:
\( r = \left( \frac{PMT (1 - (1 + r)^{-n})}{P} \right) \) (requires iteration)
Balloon Payment:
\( B = P (1 + r)^n - PMT \frac{(1 + r)^n - 1}{r} \)
Net Present Value (NPV):
\( NPV = \sum_{t=0}^{n} \frac{CF_t}{(1 + r)^t} \)
Internal Rate of Return (IRR):
\( 0 = \sum_{t=0}^{n} \frac{CF_t}{(1 + IRR)^t} \) (solve for IRR)
Payback Period:
\( PP = \text{Time until } \sum CF_t \geq \text{Initial Investment} \)
Annualized Return:
\( r_{\text{ann}} = \left( \frac{A}{P} \right)^{\frac{1}{n}} - 1 \)
Dividend Discount Model (DDM):
\( P_0 = \frac{D_1}{r - g} \) (constant growth)
Gordon Growth Model:
\( P_0 = \frac{D_0 (1 + g)}{r - g} \)
Capital Asset Pricing Model (CAPM):
\( E(R_i) = R_f + \beta_i (E(R_m) - R_f) \)
Sharpe Ratio:
\( S = \frac{E(R_p) - R_f}{\sigma_p} \)
Portfolio Expected Return:
\( E(R_p) = w_1 R_1 + w_2 R_2 \)
Portfolio Variance (2 Assets):
\( \sigma_p^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2 w_1 w_2 \text{Cov}(R_1, R_2) \)
Bond Price (Fixed Coupon):
\( P = \frac{C}{r} \left( 1 - (1 + r)^{-n} \right) + \frac{F}{(1 + r)^n} \)
Yield to Maturity (YTM):
\( P = \sum_{t=1}^{n} \frac{C}{(1 + YTM)^t} + \frac{F}{(1 + YTM)^n} \) (solve for YTM)
Current Yield:
\( CY = \frac{C}{P} \)
Coupon Payment:
\( C = F \cdot \text{Coupon Rate} \)
Zero-Coupon Bond Price:
\( P = \frac{F}{(1 + r)^n} \)
Duration (Macaulay):
\( D = \frac{\sum_{t=1}^{n} t \cdot \frac{C_t}{(1 + r)^t}}{P} \)
Modified Duration:
\( D_{\text{mod}} = \frac{D}{1 + r} \)
Price Change (Duration Approximation):
\( \Delta P \approx -D_{\text{mod}} \cdot \Delta r \cdot P \)
Convexity:
\( \text{Conv} = \frac{\sum_{t=1}^{n} t (t + 1) \frac{C_t}{(1 + r)^{t+2}}}{P} \)
Bond Price with Convexity:
\( \Delta P \approx P \left( -D_{\text{mod}} \Delta r + \frac{1}{2} \text{Conv} (\Delta r)^2 \right) \)
Straight-Line Depreciation:
\( D = \frac{C - S}{n} \)
Book Value (Straight-Line):
\( BV_t = C - t \cdot D \)
Double-Declining Balance:
\( D_t = \frac{2}{n} \cdot BV_{t-1} \)
Book Value (Double-Declining):
\( BV_t = BV_{t-1} - D_t \)
Sum-of-the-Yearsβ-Digits (SYD):
\( D_t = (C - S) \cdot \frac{n - t + 1}{\sum_{k=1}^{n} k} \)
SYD Total:
\( \sum_{k=1}^{n} k = \frac{n (n + 1)}{2} \)
Units of Production Depreciation:
\( D_t = (C - S) \cdot \frac{U_t}{\sum U} \)
Salvage Value Remaining:
\( BV_t = C - \sum_{k=1}^{t} D_k \)
Annual Depreciation Rate:
\( r = \frac{D}{C} \)
Accelerated Depreciation Factor:
\( D_t = C \cdot r \cdot (1 - r)^{t-1} \)
Current Ratio:
\( CR = \frac{\text{Current Assets}}{\text{Current Liabilities}} \)
Debt-to-Equity Ratio:
\( D/E = \frac{\text{Total Debt}}{\text{Total Equity}} \)
Return on Investment (ROI):
\( ROI = \frac{\text{Net Profit}}{\text{Investment Cost}} \)
Return on Equity (ROE):
\( ROE = \frac{\text{Net Income}}{\text{Shareholdersβ Equity}} \)
Return on Assets (ROA):
\( ROA = \frac{\text{Net Income}}{\text{Total Assets}} \)
Profit Margin:
\( PM = \frac{\text{Net Income}}{\text{Revenue}} \)
Price-to-Earnings Ratio (P/E):
\( P/E = \frac{\text{Market Price per Share}}{\text{Earnings per Share}} \)
Earnings per Share (EPS):
\( EPS = \frac{\text{Net Income}}{\text{Number of Shares}} \)
Quick Ratio:
\( QR = \frac{\text{Current Assets} - \text{Inventory}}{\text{Current Liabilities}} \)
Asset Turnover:
\( AT = \frac{\text{Revenue}}{\text{Total Assets}} \)
Black-Scholes Option Price (Call):
\( C = S_0 N(d_1) - K e^{-r t} N(d_2) \)
Black-Scholes \( d_1 \):
\( d_1 = \frac{\ln \left( \frac{S_0}{K} \right) + \left( r + \frac{\sigma^2}{2} \right) t}{\sigma \sqrt{t}} \)
Black-Scholes \( d_2 \):
\( d_2 = d_1 - \sigma \sqrt{t} \)
Put Option Price (Black-Scholes):
\( P = K e^{-r t} N(-d_2) - S_0 N(-d_1) \)
Put-Call Parity:
\( C - P = S_0 - K e^{-r t} \)
Delta (Call):
\( \Delta_C = N(d_1) \)
Delta (Put):
\( \Delta_P = N(d_1) - 1 \)
Gamma:
\( \Gamma = \frac{N'(d_1)}{\sigma S_0 \sqrt{t}} \), where \( N'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \)
Theta (Call):
\( \Theta_C = -\frac{S_0 \sigma N'(d_1)}{2 \sqrt{t}} - r K e^{-r t} N(d_2) \)
Vega:
\( \nu = S_0 \sqrt{t} N'(d_1) \)
Advertisement
(Google AdSense will appear here)