Master the mathematics behind chemistry with these formulas for stoichiometry, thermodynamics, and more.
Advertisement
(Google AdSense will appear here)
Moles from Mass:
\( n = \frac{m}{M} \)
Molar Mass:
\( M = \frac{m}{n} \)
Number of Particles:
\( N = n \cdot N_A \)
Avogadro’s Number:
\( N_A = 6.022 \times 10^{23} \, \text{mol}^{-1} \)
Mass Percent:
\( \text{Mass \%} = \frac{m_{\text{solute}}}{m_{\text{total}}} \times 100 \)
Mole Fraction:
\( X_i = \frac{n_i}{n_{\text{total}}} \)
Molarity:
\( M = \frac{n}{V} \) (in liters)
Molality:
\( m = \frac{n}{m_{\text{solvent}}} \) (in kg)
Normality:
\( N = \frac{\text{equivalents}}{V} \) (in liters)
Balancing Equation (Stoichiometric Ratio):
\( \frac{n_A}{a} = \frac{n_B}{b} \) (for \( aA + bB \to \text{products} \))
Limiting Reactant Yield:
\( n_{\text{product}} = n_{\text{limiting}} \cdot \frac{\text{coefficient}_{\text{product}}}{\text{coefficient}_{\text{limiting}}} \)
Ideal Gas Law:
\( PV = nRT \)
Boyle’s Law:
\( P_1 V_1 = P_2 V_2 \) (constant \( T \))
Charles’s Law:
\( \frac{V_1}{T_1} = \frac{V_2}{T_2} \) (constant \( P \))
Gay-Lussac’s Law:
\( \frac{P_1}{T_1} = \frac{P_2}{T_2} \) (constant \( V \))
Combined Gas Law:
\( \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \)
Density of Gas:
\( \rho = \frac{P M}{RT} \)
Molar Volume (STP):
\( V_m = \frac{V}{n} = 22.414 \, \text{L/mol} \) (at 0°C, 1 atm)
Dalton’s Law of Partial Pressures:
\( P_{\text{total}} = P_1 + P_2 + \cdots + P_n \)
Partial Pressure:
\( P_i = X_i P_{\text{total}} \)
Effusion Rate (Graham’s Law):
\( \frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}} \)
Root Mean Square Speed:
\( v_{\text{rms}} = \sqrt{\frac{3RT}{M}} \)
Average Kinetic Energy of Gas:
\( KE_{\text{avg}} = \frac{3}{2} RT \)
First Law of Thermodynamics:
\( \Delta U = Q - W \)
Enthalpy:
\( H = U + PV \)
Change in Enthalpy:
\( \Delta H = \Delta U + \Delta (PV) \)
Heat Capacity at Constant Volume:
\( C_V = \left( \frac{\partial U}{\partial T} \right)_V \)
Heat Capacity at Constant Pressure:
\( C_P = \left( \frac{\partial H}{\partial T} \right)_P \)
Relation Between \( C_P \) and \( C_V \):
\( C_P - C_V = R \) (ideal gas)
Work Done by Gas:
\( W = P \Delta V \) (constant pressure)
Entropy Change:
\( \Delta S = \frac{q_{\text{rev}}}{T} \)
Gibbs Free Energy:
\( G = H - T S \)
Change in Gibbs Free Energy:
\( \Delta G = \Delta H - T \Delta S \)
Standard Free Energy:
\( \Delta G^\circ = -RT \ln K \)
Hess’s Law:
\( \Delta H_{\text{total}} = \sum \Delta H_{\text{steps}} \)
Rate of Reaction:
\( \text{Rate} = -\frac{\Delta [\text{A}]}{\Delta t} = \frac{\Delta [\text{P}]}{\Delta t} \)
Rate Law:
\( \text{Rate} = k [\text{A}]^m [\text{B}]^n \)
First-Order Rate Equation:
\( \ln [\text{A}]_t = \ln [\text{A}]_0 - k t \)
Half-Life (First-Order):
\( t_{1/2} = \frac{\ln 2}{k} \approx \frac{0.693}{k} \)
Second-Order Rate Equation:
\( \frac{1}{[\text{A}]_t} = \frac{1}{[\text{A}]_0} + k t \)
Half-Life (Second-Order):
\( t_{1/2} = \frac{1}{k [\text{A}]_0} \)
Zero-Order Rate Equation:
\( [\text{A}]_t = [\text{A}]_0 - k t \)
Half-Life (Zero-Order):
\( t_{1/2} = \frac{[\text{A}]_0}{2k} \)
Arrhenius Equation:
\( k = A e^{-\frac{E_a}{RT}} \)
Arrhenius (Log Form):
\( \ln k = \ln A - \frac{E_a}{RT} \)
Two-Point Arrhenius:
\( \ln \left( \frac{k_2}{k_1} \right) = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \)
Collision Frequency Factor:
\( A = Z \cdot p \) (where \( Z \) is collision frequency, \( p \) is steric factor)
Equilibrium Constant (\( K_c \)):
\( K_c = \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b} \) (for \( aA + bB \rightleftharpoons cC + dD \))
Equilibrium Constant (\( K_p \)):
\( K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \)
Relation Between \( K_p \) and \( K_c \):
\( K_p = K_c (RT)^{\Delta n} \) (where \( \Delta n = \text{products} - \text{reactants} \))
Reaction Quotient (\( Q \)):
\( Q = \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b} \) (at any time)
Equilibrium Shift (Le Chatelier):
\( Q < K \) (to products), \( Q > K \) (to reactants)
Equilibrium Concentration (ICE Table):
\( [\text{A}]_{\text{eq}} = [\text{A}]_0 - x \cdot \frac{a}{\text{coefficient}} \)
Quadratic Equation for \( x \):
\( ax^2 + bx + c = 0 \), roots: \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
Equilibrium Constant (Free Energy):
\( K = e^{-\frac{\Delta G^\circ}{RT}} \)
Van’t Hoff Equation:
\( \ln \left( \frac{K_2}{K_1} \right) = \frac{\Delta H^\circ}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \)
Pressure-Based Equilibrium:
\( K_p = K_c \left( \frac{P}{n_{\text{total}}} \right)^{\Delta n} \)
pH:
\( \text{pH} = -\log_{10} [\text{H}^+] \)
pOH:
\( \text{pOH} = -\log_{10} [\text{OH}^-] \)
Water Ion Product:
\( K_w = [\text{H}^+] [\text{OH}^-] = 10^{-14} \) (at 25°C)
pH + pOH:
\( \text{pH} + \text{pOH} = 14 \) (at 25°C)
Acid Dissociation Constant (\( K_a \)):
\( K_a = \frac{[\text{H}^+] [\text{A}^-]}{[\text{HA}]} \)
Base Dissociation Constant (\( K_b \)):
\( K_b = \frac{[\text{BH}^+] [\text{OH}^-]}{[\text{B}]} \)
Relation Between \( K_a \) and \( K_b \):
\( K_a \cdot K_b = K_w \)
pKa:
\( \text{pKa} = -\log_{10} K_a \)
Henderson-Hasselbalch Equation:
\( \text{pH} = \text{pKa} + \log_{10} \left( \frac{[\text{A}^-]}{[\text{HA}]} \right) \)
Buffer Capacity:
\( \beta = \frac{d[\text{base}]}{d\text{pH}} \approx 2.303 \frac{K_a [\text{H}^+]}{(K_a + [\text{H}^+])^2} \)
Weak Acid Equilibrium:
\( [\text{H}^+] = \sqrt{K_a \cdot [\text{HA}]} \) (approximation)
Nernst Equation:
\( E = E^\circ - \frac{RT}{nF} \ln Q \)
Nernst (Base 10):
\( E = E^\circ - \frac{0.0592}{n} \log_{10} Q \) (at 25°C)
Standard Cell Potential:
\( E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \)
Free Energy and Cell Potential:
\( \Delta G^\circ = -n F E^\circ \)
Equilibrium Constant from \( E^\circ \):
\( \ln K = \frac{n F E^\circ}{RT} \)
Faraday’s Law (Mass):
\( m = \frac{Q M}{n F} \)
Faraday’s Constant:
\( F = 96485 \, \text{C/mol} \)
Current and Charge:
\( Q = I \cdot t \)
Conductivity:
\( \kappa = \frac{1}{\rho} = \frac{I}{V} \cdot \frac{l}{A} \)
Molar Conductivity:
\( \Lambda_m = \frac{\kappa}{c} \)
Kohlrausch’s Law:
\( \Lambda_m^\circ = \nu_+ \lambda_+ + \nu_- \lambda_- \)
de Broglie Wavelength:
\( \lambda = \frac{h}{p} = \frac{h}{m v} \)
Planck’s Equation:
\( E = h f \)
Energy of Photon:
\( E = \frac{h c}{\lambda} \)
Heisenberg Uncertainty Principle:
\( \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \)
Schrödinger Equation (Time-Independent):
\( -\frac{\hbar^2}{2m} \frac{d^2 \psi}{dx^2} + V \psi = E \psi \)
Hydrogen Atom Energy Levels:
\( E_n = -\frac{13.6}{n^2} \, \text{eV} \)
Rydberg Formula:
\( \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \), \( R_H = 1.097 \times 10^7 \, \text{m}^{-1} \)
Particle in a Box Energy:
\( E_n = \frac{n^2 h^2}{8 m L^2} \)
Harmonic Oscillator Energy:
\( E_n = \left( n + \frac{1}{2} \right) h f \)
Radial Probability Density:
\( P(r) = 4 \pi r^2 |\psi(r)|^2 \)
Bohr Radius:
\( a_0 = \frac{\hbar^2}{m_e k e^2} \approx 5.29 \times 10^{-11} \, \text{m} \)
Beer-Lambert Law:
\( A = \epsilon l c \)
Transmittance:
\( T = \frac{I}{I_0} \), \( A = -\log_{10} T \)
Wavenumber:
\( \tilde{\nu} = \frac{1}{\lambda} \) (in cm\(^{-1}\))
Vibrational Frequency:
\( f = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \) (where \( \mu = \frac{m_1 m_2}{m_1 + m_2} \))
Rotational Energy Levels:
\( E_J = \frac{\hbar^2}{2I} J (J + 1) \), \( I = \mu r^2 \)
Moment of Inertia:
\( I = \sum m_i r_i^2 \)
Rotational Constant:
\( B = \frac{h}{8 \pi^2 c I} \) (in cm\(^{-1}\))
Stokes Shift:
\( \Delta \tilde{\nu} = \tilde{\nu}_{\text{abs}} - \tilde{\nu}_{\text{emit}} \)
IR Absorption Frequency:
\( \tilde{\nu} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} \)
UV-Vis Energy Difference:
\( \Delta E = \frac{h c}{\lambda} \)
Advertisement
(Google AdSense will appear here)