Master calculus with formulas ranging from beginner to advanced topics.
Advertisement
(Google AdSense will appear here)
Limit Definition:
\( \lim_{{x \to a}} f(x) = L \)
Limit of a Constant:
\( \lim_{{x \to a}} c = c \)
Sum Rule:
\( \lim_{{x \to a}} [f(x) + g(x)] = \lim_{{x \to a}} f(x) + \lim_{{x \to a}} g(x) \)
Product Rule:
\( \lim_{{x \to a}} [f(x) \cdot g(x)] = \lim_{{x \to a}} f(x) \cdot \lim_{{x \to a}} g(x) \)
Quotient Rule:
\( \lim_{{x \to a}} \frac{{f(x)}}{{g(x)}} = \frac{{\lim_{{x \to a}} f(x)}}{{\lim_{{x \to a}} g(x)}} \), if \( \lim_{{x \to a}} g(x) \neq 0 \)
Derivative of a Constant:
\( \frac{{d}}{{dx}} (c) = 0 \)
Derivative of \( x \):
\( \frac{{d}}{{dx}} (x) = 1 \)
Power Rule (Simple):
\( \frac{{d}}{{dx}} (x^2) = 2x \)
Derivative of Exponential (Base e):
\( \frac{{d}}{{dx}} (e^x) = e^x \)
Derivative of Sine:
\( \frac{{d}}{{dx}} (\sin x) = \cos x \)
Definition of Derivative:
\( f'(x) = \lim_{{h \to 0}} \frac{{f(x + h) - f(x)}}{{h}} \)
General Power Rule:
\( \frac{{d}}{{dx}} (x^n) = n x^{{n-1}} \)
Product Rule:
\( \frac{{d}}{{dx}} [f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x) \)
Quotient Rule:
\( \frac{{d}}{{dx}} \left( \frac{{f(x)}}{{g(x)}} \right) = \frac{{f'(x)g(x) - f(x)g'(x)}}{{[g(x)]^2}} \)
Chain Rule:
\( \frac{{d}}{{dx}} [f(g(x))] = f'(g(x)) \cdot g'(x) \)
Derivative of Natural Log:
\( \frac{{d}}{{dx}} (\ln x) = \frac{1}{x} \)
Derivative of Tangent:
\( \frac{{d}}{{dx}} (\tan x) = \sec^2 x \)
Implicit Derivative:
\( \frac{{dy}}{{dx}} = -\frac{{\frac{{\partial F}}{{\partial x}}}}{{\frac{{\partial F}}{{\partial y}}}} \), for \( F(x, y) = 0 \)
Example (\( x^2 + y^2 = 1 \)):
\( 2x + 2y \frac{{dy}}{{dx}} = 0 \Rightarrow \frac{{dy}}{{dx}} = -\frac{{x}}{{y}} \)
Velocity (First Derivative):
\( v(t) = \frac{{ds}}{{dt}} \)
Acceleration (Second Derivative):
\( a(t) = \frac{{dv}}{{dt}} = \frac{{d^2 s}}{{dt^2}} \)
Critical Points:
\( f'(x) = 0 \) or undefined
Second Derivative Test:
\( f''(x) > 0 \) (min), \( f''(x) < 0 \) (max)
Indefinite Integral:
\( \int f(x) \, dx = F(x) + C \), where \( F'(x) = f(x) \)
Power Rule:
\( \int x^n \, dx = \frac{{x^{{n+1}}}}{{n+1}} + C \), \( n \neq -1 \)
Exponential Integral:
\( \int e^x \, dx = e^x + C \)
Trigonometric Integrals:
\( \int \sin x \, dx = -\cos x + C \)
\( \int \cos x \, dx = \sin x + C \)
Definite Integral:
\( \int_{a}^{b} f(x) \, dx = F(b) - F(a) \)
Integration by Parts:
\( \int u \, dv = uv - \int v \, du \)
Area Under Curve:
\( A = \int_{a}^{b} f(x) \, dx \)
Area Between Curves:
\( A = \int_{a}^{b} [f(x) - g(x)] \, dx \), where \( f(x) \geq g(x) \)
Volume of Revolution (Disk Method):
\( V = \pi \int_{a}^{b} [f(x)]^2 \, dx \)
Arc Length:
\( L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx \)
Derivative:
\( \frac{{dy}}{{dx}} = \frac{{dy/dt}}{{dx/dt}} \), if \( \frac{{dx}}{{dt}} \neq 0 \)
Arc Length:
\( L = \int_{t_1}^{t_2} \sqrt{\left(\frac{{dx}}{{dt}}\right)^2 + \left(\frac{{dy}}{{dt}}\right)^2} \, dt \)
Conversion to Cartesian:
\( x = r \cos \theta, \, y = r \sin \theta \)
Area in Polar Form:
\( A = \frac{1}{2} \int_{\alpha}^{\beta} [r(\theta)]^2 \, d\theta \)
Arc Length:
\( L = \int_{\alpha}^{\beta} \sqrt{[r(\theta)]^2 + \left(\frac{{dr}}{{d\theta}}\right)^2} \, d\theta \)
Infinite Limits:
\( \int_{a}^{\infty} f(x) \, dx = \lim_{{t \to \infty}} \int_{a}^{t} f(x) \, dx \)
Discontinuity at \( b \):
\( \int_{a}^{b} f(x) \, dx = \lim_{{t \to b^-}} \int_{a}^{t} f(x) \, dx \)
Separable Equations:
\( \frac{{dy}}{{dx}} = f(x)g(y) \Rightarrow \int \frac{{dy}}{{g(y)}} = \int f(x) \, dx \)
Linear First-Order:
\( \frac{{dy}}{{dx}} + P(x)y = Q(x) \), solution: \( y = e^{-\int P(x) \, dx} \left( \int Q(x) e^{\int P(x) \, dx} \, dx + C \right) \)
Second-Order (Homogeneous):
\( y'' + py' + qy = 0 \), roots \( r_1, r_2 \): \( y = C_1 e^{r_1 x} + C_2 e^{r_2 x} \)
Geometric Series:
\( \sum_{{n=0}}^{\infty} ar^n = \frac{a}{{1-r}} \), if \( |r| < 1 \)
Taylor Series:
\( f(x) = \sum_{{n=0}}^{\infty} \frac{{f^{(n)}(a)}}{{n!}} (x - a)^n \)
Maclaurin Series for \( e^x \):
\( e^x = \sum_{{n=0}}^{\infty} \frac{{x^n}}{{n!}} \)
Convergence Test (Ratio):
\( \lim_{{n \to \infty}} \left| \frac{{a_{n+1}}}{{a_n}} \right| < 1 \) (converges)
Partial Derivative:
\( \frac{{\partial f}}{{\partial x}} = \lim_{{h \to 0}} \frac{{f(x + h, y) - f(x, y)}}{{h}} \)
Gradient:
\( \nabla f = \left( \frac{{\partial f}}{{\partial x}}, \frac{{\partial f}}{{\partial y}} \right) \)
Double Integral:
\( \iint_{R} f(x, y) \, dA \)
Directional Derivative:
\( D_{\mathbf{u}} f = \nabla f \cdot \mathbf{u} \)
Divergence:
\( \nabla \cdot \mathbf{F} = \frac{{\partial F_x}}{{\partial x}} + \frac{{\partial F_y}}{{\partial y}} + \frac{{\partial F_z}}{{\partial z}} \)
Curl:
\( \nabla \times \mathbf{F} = \left( \frac{{\partial F_z}}{{\partial y}} - \frac{{\partial F_y}}{{\partial z}}, \frac{{\partial F_x}}{{\partial z}} - \frac{{\partial F_z}}{{\partial x}}, \frac{{\partial F_y}}{{\partial x}} - \frac{{\partial F_x}}{{\partial y}} \right) \)
Greenβs Theorem:
\( \oint_{C} (P \, dx + Q \, dy) = \iint_{R} \left( \frac{{\partial Q}}{{\partial x}} - \frac{{\partial P}}{{\partial y}} \right) \, dA \)
Stokesβ Theorem:
\( \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} \)
Wave Equation:
\( \frac{{\partial^2 u}}{{\partial t^2}} = c^2 \frac{{\partial^2 u}}{{\partial x^2}} \)
Heat Equation:
\( \frac{{\partial u}}{{\partial t}} = k \frac{{\partial^2 u}}{{\partial x^2}} \)
Laplaceβs Equation:
\( \nabla^2 u = \frac{{\partial^2 u}}{{\partial x^2}} + \frac{{\partial^2 u}}{{\partial y^2}} = 0 \)
Advertisement
(Google AdSense will appear here)