๐Ÿ“˜ Algebra Formulas

Master algebra with these formulas, categorized for easy learning.

Advertisement

(Google AdSense will appear here)

๐Ÿ“Œ Basic Algebra

Distributive Law:

\( a(b + c) = ab + ac \)

Commutative Addition:

\( a + b = b + a \)

Commutative Multiplication:

\( ab = ba \)

Associative Addition:

\( (a + b) + c = a + (b + c) \)

Associative Multiplication:

\( (ab)c = a(bc) \)

Additive Identity:

\( a + 0 = a \)

Multiplicative Identity:

\( a \cdot 1 = a \)

Additive Inverse:

\( a + (-a) = 0 \)

Multiplicative Inverse:

\( a \cdot \frac{1}{a} = 1 \)

Difference of Squares:

\( a^2 - b^2 = (a-b)(a+b) \)

Sum of Cubes:

\( a^3 + b^3 = (a+b)(a^2 - ab + b^2) \)

Difference of Cubes:

\( a^3 - b^3 = (a-b)(a^2 + ab + b^2) \)

Square of Sum:

\( (a + b)^2 = a^2 + 2ab + b^2 \)

Square of Difference:

\( (a - b)^2 = a^2 - 2ab + b^2 \)

Cube of Sum:

\( (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \)

Cube of Difference:

\( (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 \)

Exponent Rules:

\( a^m \cdot a^n = a^{m+n} \), \( \frac{a^m}{a^n} = a^{m-n} \), \( (ab)^n = a^nb^n \), \( \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \), \( (a^m)^n = a^{mn} \), \( a^{-n} = \frac{1}{a^n} \), \( a^{1/n} = \sqrt[n]{a} \), \( a^{m/n} = \sqrt[n]{a^m} \)

Absolute Value:

\( |a| = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases} \), \( |ab|=|a||b| \), \( \left|\frac{a}{b}\right|=\frac{|a|}{|b|} \)

Factorials:

\( n! = n \times (n-1)! \), \( 0! = 1 \), \( _nP_k = \frac{n!}{(n-k)!} \)

Arithmetic Sequence:

\( a_n = a_1 + (n-1)d \), \( S_n = \frac{n}{2}(a_1 + a_n) \)

Geometric Sequence:

\( a_n = a_1r^{n-1} \), \( S_n = a_1\frac{r^n - 1}{r - 1} \)

๐Ÿ“Œ Quadratic Equations

Standard Form:

\( ax^2 + bx + c = 0 \)

Quadratic Formula:

\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

Vertex Form:

\( y = a(x-h)^2 + k \)

Vertex Coordinates:

\( \left( -\frac{b}{2a}, -\frac{D}{4a} \right) \)

Axis of Symmetry:

\( x = -\frac{b}{2a} \)

Discriminant:

\( D = b^2 - 4ac \)

Nature of Roots:

\( D > 0 \): Two distinct real roots, \( D = 0 \): One real root, \( D < 0 \): Two complex conjugate roots

Sum of Roots:

\( \alpha + \beta = -\frac{b}{a} \)

Product of Roots:

\( \alpha\beta = \frac{c}{a} \)

Parabola Opening:

\( a > 0 \): Opens upward, \( a < 0 \): Opens downward

Focus of Parabola:

\( \left( h, k + \frac{1}{4a} \right) \)

Directrix of Parabola:

\( y = k - \frac{1}{4a} \)

Roots as Factors:

\( ax^2 + bx + c = a(x - \alpha)(x - \beta) \)

Completing the Square:

\( x^2 + bx = \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} \)

Quadratic-Linear System:

Solve \( y = ax^2 + bx + c \) and \( y = mx + k \)

Maximum/Minimum Value:

\( y = -\frac{D}{4a} \)

Graph Transformations:

\( y = a(x-h)^2 + k \): - Vertical stretch by \( |a| \), - Reflect over x-axis if \( a < 0 \), - Shift \( h \) units horizontally, - Shift \( k \) units vertically

๐Ÿ“Œ Polynomials

General Form:

\( P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \)

Degree:

Highest power of \( x \) with non-zero coefficient

Remainder Theorem:

\( P(a) = \) remainder when \( P(x) \) รท \( (x-a) \)

Factor Theorem:

\( (x-a) \) is factor โ‡จ \( P(a) = 0 \)

Synthetic Division:

Quick division by \( (x - c) \)

Rational Root Theorem:

Possible roots = \( \pm \frac{\text{factors of } a_0}{\text{factors of } a_n} \)

Descartes' Rule:

Number of positive roots = sign changes or less by even number

Fundamental Theorem:

Every non-constant polynomial has at least one complex root

Complex Roots:

Non-real roots come in conjugate pairs

Multiplicity:

If \( (x-a)^k \) is factor, \( a \) has multiplicity \( k \)

End Behavior:

- Leading term \( a_nx^n \): \( n \) even: Ends same direction, \( n \) odd: Ends opposite directions

Graph:

A smooth continuous curve with at most \( n-1 \) turning points

Binomial Expansion:

\( (x + y)^n = \sum_{k=0}^n \binom{n}{k}x^{n-k}y^k \)

Taylor Polynomial:

\( P(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k \)

Legendre Polynomials:

Solutions to Legendre's equation

Chebyshev Polynomials:

\( T_n(x) = \cos(n \arccos x) \)

๐Ÿ“Œ Logarithms

Definition:

\( \log_b a = c \iff b^c = a \)

Common Logarithm:

\( \log_{10} a = \log a \)

Natural Logarithm:

\( \log_e a = \ln a \)

Change of Base:

\( \log_b a = \frac{\log_k a}{\log_k b} \)

Product Rule:

\( \log_b (xy) = \log_b x + \log_b y \)

Quotient Rule:

\( \log_b \left( \frac{x}{y} \right) = \log_b x - \log_b y \)

Power Rule:

\( \log_b (x^n) = n \log_b x \)

Log of 1:

\( \log_b 1 = 0 \)

Log of Base:

\( \log_b b = 1 \)

Inverse Property:

\( b^{\log_b a} = a \)

Log of Reciprocal:

\( \log_b \left( \frac{1}{x} \right) = -\log_b x \)

Log of Root:

\( \log_b \sqrt[n]{x} = \frac{1}{n} \log_b x \)

Exponential-Log Relationship:

\( \log_b (b^x) = x \)

Logarithmic Differentiation:

\( \frac{d}{dx} \ln x = \frac{1}{x} \)

Logarithmic Integration:

\( \int \frac{1}{x} dx = \ln |x| + C \)

Logarithmic Inequalities:

\( \log_b x > \log_b y \iff x > y \) (if \( b > 1 \)), \( \log_b x > \log_b y \iff x < y \) (if \( 0 < b < 1 \))

Logarithmic Limits:

\( \lim_{x \to 0^+} \ln x = -\infty \), \( \lim_{x \to \infty} \ln x = \infty \)

Logarithmic Series Expansion:

\( \ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \) (for \( |x| < 1 \))

Logarithmic Identities:

\( \log_b (x^m \cdot y^n) = m \log_b x + n \log_b y \), \( \log_b \left( \frac{x^m}{y^n} \right) = m \log_b x - n \log_b y \)

Logarithmic Equations:

\( \log_b x = \log_b y \iff x = y \), \( \log_b x = k \iff x = b^k \)

๐Ÿ“Œ Matrices

Matrix Definition:

\( A = [a_{ij}]_{m \times n} \)

Matrix Addition:

\( [A + B]_{ij} = A_{ij} + B_{ij} \)

Matrix Subtraction:

\( [A - B]_{ij} = A_{ij} - B_{ij} \)

Scalar Multiplication:

\( [kA]_{ij} = k \cdot A_{ij} \)

Matrix Multiplication:

\( [AB]_{ij} = \sum_{k=1}^n A_{ik} B_{kj} \)

Identity Matrix:

\( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

Zero Matrix:

\( 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)

Transpose:

\( [A^T]_{ij} = A_{ji} \)

Determinant (2x2):

\( \det(A) = ad - bc \) for \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)

Determinant (3x3):

\( \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \) for \( A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \)

Inverse (2x2):

\( A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \)

Inverse (3x3):

Use cofactor matrix and adjugate

Trace:

\( \text{tr}(A) = \sum_{i=1}^n A_{ii} \)

Diagonal Matrix:

\( D = \text{diag}(d_1, d_2, \dots, d_n) \)

Symmetric Matrix:

\( A = A^T \)

Skew-Symmetric Matrix:

\( A = -A^T \)

Orthogonal Matrix:

\( A^T = A^{-1} \)

Eigenvalues:

\( \det(A - \lambda I) = 0 \)

Eigenvectors:

\( (A - \lambda I)\mathbf{v} = 0 \)

Rank:

Number of linearly independent rows/columns

Nullity:

\( \text{nullity}(A) = n - \text{rank}(A) \)

Matrix Power:

\( A^k = A \cdot A \cdots A \) (\( k \) times)

Matrix Exponential:

\( e^A = \sum_{k=0}^\infty \frac{A^k}{k!} \)

Singular Matrix:

\( \det(A) = 0 \)

Non-Singular Matrix:

\( \det(A) \neq 0 \)

Cramer's Rule:

\( x_i = \frac{\det(A_i)}{\det(A)} \) for \( A\mathbf{x} = \mathbf{b} \)

๐Ÿ“Œ Vector Algebra

Vector Definition:

\( \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \)

Vector Addition:

\( \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix} \)

Vector Subtraction:

\( \mathbf{u} - \mathbf{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ u_3 - v_3 \end{bmatrix} \)

Scalar Multiplication:

\( k\mathbf{v} = \begin{bmatrix} k v_1 \\ k v_2 \\ k v_3 \end{bmatrix} \)

Dot Product:

\( \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \)

Dot Product (Geometric):

\( \mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \)

Cross Product:

\( \mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \)

Cross Product (Geometric):

\( \|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta \)

Magnitude (Norm):

\( \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2} \)

Unit Vector:

\( \hat{v} = \frac{\mathbf{v}}{\|\mathbf{v}\|} \)

Projection of \( \mathbf{u} \) onto \( \mathbf{v} \):

\( \text{proj}_{\mathbf{v}} \mathbf{u} = \left( \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{v} \)

Scalar Triple Product:

\( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \)

Vector Triple Product:

\( \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \)

Angle Between Vectors:

\( \theta = \cos^{-1} \left( \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right) \)

Orthogonal Vectors:

\( \mathbf{u} \cdot \mathbf{v} = 0 \)

Parallel Vectors:

\( \mathbf{u} \times \mathbf{v} = \mathbf{0} \)

Line Equation (Vector Form):

\( \mathbf{r} = \mathbf{r}_0 + t\mathbf{d} \)

Plane Equation (Vector Form):

\( \mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0 \)

Distance Between Points

: \( d = \|\mathbf{v} - \mathbf{u}\| \)

Distance from Point to Line:

\( d = \frac{\|\mathbf{v} \times \mathbf{d}\|}{\|\mathbf{d}\|} \)

Distance from Point to Plane:

\( d = \frac{|\mathbf{n} \cdot (\mathbf{r}_0 - \mathbf{p})|}{\|\mathbf{n}\|} \)

Area of Parallelogram:

\( \|\mathbf{u} \times \mathbf{v}\| \)

Volume of Parallelepiped:

\( |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \)

Direction Cosines

: \( \cos \alpha = \frac{v_1}{\|\mathbf{v}\|}, \cos \beta = \frac{v_2}{\|\mathbf{v}\|}, \cos \gamma = \frac{v_3}{\|\mathbf{v}\|} \)

Vector Differentiation:

\( \frac{d\mathbf{v}}{dt} = \begin{bmatrix} \frac{dv_1}{dt} \\ \frac{dv_2}{dt} \\ \frac{dv_3}{dt} \end{bmatrix} \)

๐Ÿ“Œ Complex Numbers

Definition:

\( z = a + bi \), where \( i = \sqrt{-1} \)

Real Part:

\( \text{Re}(z) = a \)

Imaginary Part:

\( \text{Im}(z) = b \)

Complex Conjugate:

\( \overline{z} = a - bi \)

Modulus:

\( |z| = \sqrt{a^2 + b^2} \)

Argument:

\( \arg(z) = \theta = \tan^{-1}\left(\frac{b}{a}\right) \)

Polar Form:

\( z = r(\cos \theta + i \sin \theta) \), where \( r = |z| \)

Euler's Formula:

\( e^{i\theta} = \cos \theta + i \sin \theta \)

Exponential Form:

\( z = re^{i\theta} \)

Addition:

\( (a + bi) + (c + di) = (a + c) + (b + d)i \)

Subtraction:

\( (a + bi) - (c + di) = (a - c) + (b - d)i \)

Multiplication:

\( (a + bi)(c + di) = (ac - bd) + (ad + bc)i \)

Division:

\( \frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{c^2 + d^2} \)

Reciprocal:

\( \frac{1}{z} = \frac{\overline{z}}{|z|^2} \)

Power:

\( z^n = r^n (\cos(n\theta) + i \sin(n\theta)) \)

Roots:

\( z^{1/n} = r^{1/n} \left[ \cos\left(\frac{\theta + 2k\pi}{n}\right) + i \sin\left(\frac{\theta + 2k\pi}{n}\right) \right] \), \( k = 0, 1, \dots, n-1 \)

De Moivre's Theorem:

\( (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \)

Logarithm:

\( \ln(z) = \ln(r) + i(\theta + 2k\pi) \), \( k \in \mathbb{Z} \)

Exponential Function:

\( e^{z} = e^{a}(\cos b + i \sin b) \)

Trigonometric Functions:

\( \sin z = \frac{e^{iz} - e^{-iz}}{2i} \), \( \cos z = \frac{e^{iz} + e^{-iz}}{2} \), \( \tan z = \frac{\sin z}{\cos z} \)

Hyperbolic Functions:

\( \sinh z = \frac{e^{z} - e^{-z}}{2} \), \( \cosh z = \frac{e^{z} + e^{-z}}{2} \), \( \tanh z = \frac{\sinh z}{\cosh z} \)

Complex Equations:

\( z^n = w \) has \( n \) distinct roots

Complex Plane:

\( z = (a, b) \) in \( \mathbb{C} \)

Vector Representation:

\( z = a\mathbf{i} + b\mathbf{j} \)

Fundamental Theorem of Algebra:

Every non-constant polynomial has at least one complex root

๐Ÿ“Œ Binomial Theorem

Binomial Theorem:

\( (a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \)

Binomial Coefficient:

\( \binom{n}{k} = \frac{n!}{k!(n-k)!} \)

Pascal's Identity:

\( \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \)

Symmetry Property:

\( \binom{n}{k} = \binom{n}{n-k} \)

Sum of Coefficients:

\( \sum_{k=0}^n \binom{n}{k} = 2^n \)

Alternating Sum:

\( \sum_{k=0}^n (-1)^k \binom{n}{k} = 0 \)

Vandermonde's Identity:

\( \sum_{k=0}^r \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r} \)

Hockey-Stick Identity:

\( \sum_{k=r}^n \binom{k}{r} = \binom{n+1}{r+1} \)

Binomial Expansion for Negative Exponents:

\( (1 + x)^{-n} = \sum_{k=0}^\infty \binom{-n}{k} x^k \)

Generalized Binomial Theorem:

\( (a + b)^\alpha = \sum_{k=0}^\infty \binom{\alpha}{k} a^{\alpha-k} b^k \), \( \alpha \in \mathbb{R} \)

Multinomial Theorem:

\( (a_1 + a_2 + \dots + a_m)^n = \sum_{k_1 + k_2 + \dots + k_m = n} \frac{n!}{k_1! k_2! \dots k_m!} a_1^{k_1} a_2^{k_2} \dots a_m^{k_m} \)

Binomial Recurrence:

\( \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \)

Exponential Generating Function:

\( \sum_{n=0}^\infty \frac{x^n}{n!} \binom{n}{k} = \frac{x^k}{k!} e^x \)

Binomial Probability:

\( P(k) = \binom{n}{k} p^k (1-p)^{n-k} \)

Central Binomial Coefficient:

\( \binom{2n}{n} \)

Catalan Numbers:

\( C_n = \frac{1}{n+1} \binom{2n}{n} \)

Stirling's Approximation:

\( \binom{n}{k} \approx \frac{n^k}{k!} \) for large \( n \)

Binomial Integral Representation:

\( \binom{n}{k} = \frac{1}{2\pi i} \oint \frac{(1+z)^n}{z^{k+1}} dz \)

Binomial Matrix:

\( \begin{bmatrix} \binom{0}{0} & 0 & 0 \\ \binom{1}{0} & \binom{1}{1} & 0 \\ \binom{2}{0} & \binom{2}{1} & \binom{2}{2} \end{bmatrix} \)

Binomial Series:

\( (1 + x)^n = \sum_{k=0}^\infty \binom{n}{k} x^k \)

๐Ÿ“Œ Probability & Combinatorics

Probability of Event:

\( P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} \)

Complementary Probability:

\( P(A^c) = 1 - P(A) \)

Union of Events:

\( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)

Mutually Exclusive Events:

\( P(A \cup B) = P(A) + P(B) \)

Conditional Probability:

\( P(A | B) = \frac{P(A \cap B)}{P(B)} \)

Independent Events:

\( P(A \cap B) = P(A) \cdot P(B) \)

Bayes' Theorem:

\( P(A | B) = \frac{P(B | A) P(A)}{P(B)} \)

Law of Total Probability:

\( P(A) = \sum_{i=1}^n P(A | B_i) P(B_i) \)

Permutations:

\( P(n, k) = \frac{n!}{(n-k)!} \)

Combinations:

\( C(n, k) = \binom{n}{k} = \frac{n!}{k!(n-k)!} \)

Multinomial Coefficient:

\( \frac{n!}{k_1! k_2! \dots k_m!} \)

Binomial Probability:

\( P(k) = \binom{n}{k} p^k (1-p)^{n-k} \)

Geometric Probability:

\( P(k) = (1-p)^{k-1} p \)

Poisson Probability:

\( P(k) = \frac{\lambda^k e^{-\lambda}}{k!} \)

Hypergeometric Probability:

\( P(k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} \)

Expected Value:

\( E(X) = \sum_{i=1}^n x_i P(x_i) \)

Variance:

\( \text{Var}(X) = E(X^2) - [E(X)]^2 \)

Standard Deviation:

\( \sigma = \sqrt{\text{Var}(X)} \)

Covariance:

\( \text{Cov}(X, Y) = E(XY) - E(X)E(Y) \)

Correlation:

\( \rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} \)

Markov's Inequality:

\( P(X \geq a) \leq \frac{E(X)}{a} \)

Chebyshev's Inequality:

\( P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2} \)

Central Limit Theorem:

\( \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \)

Normal Distribution:

\( f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \)

Exponential Distribution:

\( f(x) = \lambda e^{-\lambda x} \)

Uniform Distribution:

\( f(x) = \frac{1}{b-a} \) for \( x \in [a, b] \)

Gamma Distribution:

\( f(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{\Gamma(k)} \)

Beta Distribution:

\( f(x) = \frac{x^{\alpha-1} (1-x)^{\beta-1}}{B(\alpha, \beta)} \)

Chi-Square Distribution:

\( f(x) = \frac{x^{k/2-1} e^{-x/2}}{2^{k/2} \Gamma(k/2)} \)

Student's t-Distribution:

\( f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} \)

F-Distribution:

\( f(x) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \)

Moment Generating Function:

\( M_X(t) = E(e^{tX}) \)

Characteristic Function:

\( \phi_X(t) = E(e^{itX}) \)

Joint Probability:

\( P(A \cap B) = P(A) P(B | A) \)

Marginal Probability:

\( P(A) = \sum_{i=1}^n P(A \cap B_i) \)

Conditional Expectation:

\( E(X | Y) = \sum_{x} x P(X = x | Y) \)

Law of Large Numbers:

\( \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n X_i = \mu \)

Stirling's Formula:

\( n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \)

Birthday Problem:

\( P(\text{No match}) = \frac{365!}{(365-n)! 365^n} \)

Monty Hall Problem:

\( P(\text{Win}) = \frac{2}{3} \)

Gambler's Ruin:

\( P(\text{Ruin}) = \frac{1 - \left(\frac{q}{p}\right)^N}{1 - \left(\frac{q}{p}\right)^M} \)

Entropy:

\( H(X) = -\sum_{i=1}^n P(x_i) \log P(x_i) \)

Kullback-Leibler Divergence:

\( D_{KL}(P \parallel Q) = \sum_{i=1}^n P(x_i) \log \frac{P(x_i)}{Q(x_i)} \)

Mutual Information:

\( I(X; Y) = \sum_{x,y} P(x, y) \log \frac{P(x, y)}{P(x)P(y)} \)

Conditional Entropy:

\( H(X | Y) = -\sum_{x,y} P(x, y) \log P(x | y) \)

Joint Entropy:

\( H(X, Y) = -\sum_{x,y} P(x, y) \log P(x, y) \)

Information Gain:

\( IG(X, Y) = H(X) - H(X | Y) \)

Poisson Process:

\( P(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!} \)

Markov Chains:

\( P(X_{n+1} = x | X_n = x_n, \dots, X_0 = x_0) = P(X_{n+1} = x | X_n = x_n) \)

Stationary Distribution:

\( \pi = \pi P \)

Ergodic Theorem:

\( \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(X_k) = E(f(X)) \)

Advertisement

(Google AdSense will appear here)